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Requires integrated approach.
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Major IssuesMajor Issues
• Contrast: structural vs. electronic
• Quantifying interfacial roughnees
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Combine experiments with first-principles theory.



MBE
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� Input for growth simulations,
 process control

� Surface reconstructions,
growth modes

� Correlate with in-situ probes

� Feedback to optimize growth
� "Cook and look" --

 analyze -- try again

� Correlate surfaces/interfaces
 with electrical/optical prop.'s
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Quasi-periodic defects make
local (4×3) domains.
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� RHEED typically "(1×3)" −−−− depends
 strongly on T, Sb4 flux

� At high T, low Sb4, faint (4x3)



III-Sb(001)-"(1×3)" understood well enough?...

150 Å × 150 Å

� (Al,Ga,In)Sb "(1×3)" all look similar

� Lowest energy structure is more
 complex (4×3) or (4×6)?
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Something we don't understand about "(1×3)"...

� Prepare "(1×3)," deposit 0.2 ML,
 0.35 ML observed!

"0.2 ML" (0.35 ML actual?)

500 Å x 500 Å
Filled States (2.5 V)

� "(1×3)" actually multiple
 reconstructions
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Multiple (4×3) structures,
including novel mixed dimer?

� Multiple (4×3)
 phases

� "Notch" is really
 a kink

� When more Sb
 rich, "notch"
 becomes Sb
 dimer kink
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LDA by H. Kim, N. Modine, E. Kaxiras
• Novel Al+Sb mixed dimer in α and β(4×3)

phases -- Al close to natural lattice site
• Theory: same relative stability vs. Sb flux
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• Converts to α(4×3)
during anneal:  up
to 1/4 ML more Al

• RHEED still "(1×3)"

Filled
States

Anneal
α+βα+βα+βα+βα+βα+βα+βα+β

((((((((extra Alextra Al))))))))
~0.35 ML~0.35 ML
ββββ islands

20 nm

ββββββββ(4×3)(4×3) ~0.2 ML~0.2 ML+0.2 ML

AlSb
ββββ islands

Restarting growth
 changes surface

back to β(4×3)
−> extra islands.
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β(4x3) γ"(4x3)" c(4x4)• β(4×3) has 1/12 ML Al on top; γ"(4×3)",
c(4×4) only Sb on top

• RHEED changes to blurry (2×2)+faint 3×
• <0.1 ML islands created

Reconstruction changes are general source of roughness.



Can NOT anneal out vacancies:
get complex reconstruction.

2 s Sb2 at 400 °C 30 s Sb2
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800 Å × 800 Å

� Sb very reactive:  creates 2-level
 surface with ~25% vacancy islands
� Surface has disordered γ/β(4×3)-like
 InSb structure

600 s at 500 °C
OR



Roughness due to reconstruction stoichiometry again.
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• Looks like original 1/2 ML As remains at AlSb/InAs interface

• Excess Sb from reconstruction floats in InAs/AlSb

X-STM compliments plan-view STM results.

As/Sb Sublattice (Filled States)
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• (110) Surface Structure Artifacts
• See every-other (001) layer
• See III OR V lattice atoms (bias dependence)
• Four {110} cleavage faces; e.g. (110) vs. (110)

• Interfacial bond contrast: electronics vs. structural
• Example:  GaAs vs. InSb bonds at InAs-GaSb interface

B. Z. Nosho, et al., Surf. Sci. 465, 361 (2000)
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• Only see bond-type
contrast at some
interfaces

• InSb row higher, GaAs
row lower by 0.2-0.3 Å

Bond geometry
- in vs. out of plane -
depends on cleavage
plane and bond type.
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LDA calculations by S.-G. Kim and S.C. Erwin

Filled-state contrast: InAs vs. GaSb = 60% electronic
Interfacial bonds = 96% structural
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22

• As2 on GaSb causes anion exchange rxn � 1−3 ML GaAs
• Also seen in X-ray diffraction spectra (JVST-B, July 2001)
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• As4 causes less GaAs bond formation than As2

• Somehow degrades superlattice structure

Growth at 425 °C

As2

30
 s

5 
s

As4

30 s As4 at 425 °C
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Growth and interrupts with As4 cause unusual
thickness variations w/ period 2x the SL period.
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• Vertically-aligned, wire-like structures with long-range order
• 120 nm lateral period, 16.5 nm vertical period
• Adjacent wires “out-of-phase”
• Other X-STM contrast from elastic relaxation at {110} surface
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• Appears to be instability in InAs growth related to strain
• Instability at high As chemical potential (As4 pressure)
• From HRL (F. Grosse/W. Barvosa-Carter), high As causes:

• Decreased critical island size � facilitates formation of InAs mounds
• Anisotropic step formation energies

InAs Buffer GaSb Buffer 2xGaSb/GaSb AlSb Buffer

τ τ τ τ ~120 nm τ τ τ τ ~150 nm τ τ τ τ ~100 nmNo Wires!

GaSb compressed
InAs unstrained

GaSb unstrained
InAs tensile

GaSb unstrained
InAs tensile

GaSb tensile
InAs more tensile

All images 320 nm × 320 nm, (110) face, filled states



• Understanding of atomic-scale structure critical
for surface/interface optimization and modeling

• Surface studies must be integrated with growth
effort, device fab., materials
characterization, and theory

• Surface vs. material properties:
interplay between kinetics and
thermodynamics

Next up: Spintronic Devices..
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